如图,现有一块四边形的木板余料ABCD,经测量AB=25cm,BC=54cm,CD=30cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,则该矩形的面积为____________.
【答案】486
【解析】解:如图,延长BA、CD交于点E,过点E作EH⊥BC于点H.∵∠B=∠C,∴EB=EC.∵BC=54cm,且EH⊥BC,∴BH=CH=BC=27cm.∵tanB==,∴EH=36cm.在Rt△BHE中,BE==45cm.∵AB=25cm,∴AE=20cm,∴BE的中点Q在线段AB上.∵CD=30cm,∴ED=15cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上.设PN=x,矩形PQMN的面积为S,由条件可得△EQP∽△EBC,∴,解得:QP=54﹣1.5x.则S=PN•PQ=x(54﹣1.5x)==,故S的最大值为486.故答案为:486.