紫气C
返回首页 | 学习强国
关键字: | 时间:2025-11-06 03:23 | 人浏览

【答案】如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( ).

如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( ).

A. 1 B. C. 2 D.

【答案】

B

【解析】

连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.

如图,连接BB′,

∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,

∴AB=AB′,∠BAB′=60°,

∴△ABB′是等边三角形,

∴AB=BB′,

在△ABC′和△B′BC′中,

∴△ABC′≌△B′BC′(SSS),

∴∠ABC′=∠B′BC′,

延长BC′交AB′于D,

则BD⊥AB′,

∵∠C=90°,AC=BC=,

∴AB==2,

∴BD=2×=,

C′D=×2=1,

∴BC′=BD-C′D=-1.

故选:B.

答案有错

上一篇:在一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则估计口袋中白球大约有_________个.

下一篇:当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”. 如果关于x的一元二次方程x2+(m-2)x-2m=0是“倍根方程”,那么m的值为_______

紫气C手机端XML联系我